139. Reaktion von 2-Diazopropan mit 1,3-Thiazol-5(4H)-thionen

von Grzegorz Mlostoń*

Institut für Chemie der Universität Łódź, Narutowicza 68, PL-90-136 Łódź

und Heinz Heimgartner*

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

(24.VI.92)

Reaction of 2-Diazopropane and 1,3-Thiazole-5(4H)-thiones

At 0°, 1,3-thiazoles 1 and 2-diazopropane in pentane or MeOH undergo a smooth 1,3-dipolar cycloaddition to give spirocyclic 2,4-dihydro-1,3,4-thiadiazoles 6 (*Scheme 3*). Elimination of N₂ occurs already at 20°, yielding spirocyclic thiiranes 7. At room temperature, the latter decompose slowly to give 4,5-dihydro-5-isopropylidene-1,3-thiazoles 8. The desulfurization $7 \rightarrow 8$ can be accelerated by heating or by addition of trimethyl phosphite. The intermediate of the N₂ elimination of 6 is a thiocarbonyl ylide D which can be trapped with the reactive dipolarophiles thiobenzophenone and fumarodinitrile (*Scheme 4*). In the absence of these trapping reagents, D undergoes ring closure to thiiranes 7. The cycloaddition of D and a second molecule of 1, the so-called *Schönberg* reaction, is not observed.

1. Einleitung. – Vor kurzem berichteten wir über 1,3-dipolare Cycloadditionen von Thiocarbonyl-yliden mit 1,3-Thiazol-5(4H)-thionen 1 [1]. Einmal mehr erwies sich bei diesen Umsetzungen, dass die exocyclische (C=S)-Bindung von 1 sehr reaktiv gegenüber 1,3-dipolaren Partnern ist, d. h. exzellente dipolarophile Eigenschaften besitzt (vgl. [2-4]). Wie schon in [1] erwähnt, setzte sich auch Diazomethan als 1,3-Dipol mit 1 um, wobei neben weiteren Produkten das 1,3-Dithiolan 2 erhalten wurde [5]. Der Mechanismus dieser Reaktion ist in *Schema 1* skizziert, in Analogie zu der als *Schönberg*-Reaktion [6]

bekannten Umsetzung von Thioketonen mit Diazo-Verbindungen (s. [6–12]). Dabei wird als primäres Addukt A gebildet, das unter N_2 -Abspaltung zum Thiocarbonyl-ylid B führt. Erneute 1,3-dipolare Cycloaddition mit I liefert die Dispiro-Verbindung 2.

Im Rahmen unserer Untersuchungen zur Verallgemeinerung der Reaktion von Diazo-Verbindungen mit 1 setzten wir auch 2-Diazopropan um. Reaktionen von 2-Diazopropan mit Thiocarbonyl-Verbindungen wurden nur sehr spärlich untersucht. *Huisgen* und *Mlostoń* erhielten bei der Umsetzung mit dem sterisch gehinderten 2,2,4,4-Tetramethyl-3-thioxocyclobutanon das spirocyclische 2,5-Dihydro-1,3,4-thiadiazol 3 [9] [13] (*Schema 2*). Bei Temperaturen um 50° erfolgte die N₂-Abspaltung ($\tau_{1/2}$ (50°, Toluol) = 125 min). Dabei ging das als Zwischenprodukt postulierte Thiocarbonyl-ylid C den typischen Ringschluss zum Thiiran 4 ein. Daneben wurde *via* eine sigmatrope [1,4]-H-Verschiebung das monocyclische 5 gebildet. Das dipolare Zwischenprodukt C konnte mit MeOH abgefangen werden, wobei das entsprechende O,S-Acetal erhalten wurde.

Weitere Umsetzungen mit 2-Diazopropan wurden von Schaumann et al. [14] bzw. Hartke et al. [15] beschrieben: Bei der Reaktion mit Thioketenen wurden bemerkenswert stabile 2,5-Dihydro-2,2-dimethyl-5-methyliden-1,3,4-thiadiazole erhalten¹). Die Umsetzung mit Thiooxal-estern lieferte ebenfalls stabile (1:1)-Addukte der 1,3-dipolaren Cycloaddition an die (C=S)-Gruppe, die thermisch unter N₂-Abspaltung in Thiocrotonsäure-ester zerfielen.

2. Umsetzung von 2-Diazopropan mit 1,3-Thiazol-5(4H)-thionen. – Bei der Umsetzung der 1,3-Thiazol-5(4H)-thione 1a–c in Pentan oder MeOH bei 2–3° mit 2-Diazopropan trat eine rasche Reaktion ein, deren Endpunkt an der vollständigen Entfärbung der rot-orange-farbenen Thiazolthion-Lösung zu erkennen war. Abdampfen des Lösungsmittels bei 20° lieferte jeweils ein Rohprodukt, bei dem es sich laut ¹H-NMR um ein (1:1)-Addukt handelt. Da sich dieses schon bei Raumtemperatur unter N₂-Abspaltung zu den Folgeprodukten vom Typ 7 und 8 (Schema 3) zersetzte, schreiben wir ihm die 1,3,4-Thiadiazol-Struktur 6 zu²).

In allen drei Fällen absorbieren die dem Spiro-Zentrum benachbarten Me-Gruppen an C(9) als 2 s im Bereich von 1,55-1,9 ppm, während die beiden Me-Gruppen an C(2) als ein s bei 1,35-1,45 ppm erscheinen. Die Benzyl-H-Atome in **6c** treten als *AB*-System auf, d. h. sie sind diastereotop.

Die N_2 -Abspaltung aus den Primärprodukten erfolgte bei Raumtemperatur rasch. Für das Benzyl-Derivat **6c** wurde der Verlauf der Reaktion bei 17° kinetisch verfolgt, wobei das entwickelte N_2 volumetrisch bestimmt wurde. Die Geschwindigkeitskonstante

¹) Über den thermischen Zerfall dieser Heterocyclen (N₂-Abspaltung) wurde in [14] nichts berichtet.

²) Einen weiteren Hinweis liefern die Abfangreaktionen im Falle der Umsetzung mit 1c (s. später).

k dieser Reaktion 1. Ordnung wurde zu $1,95 \cdot 10^{-4}$ s⁻¹ ermittelt, die Halbwertszeit $\tau_{1/2}$ beträgt also rund 1 h.

Das bei der N₂-Abspaltung entstehende Produkt war ebenfalls nur mässig stabil, so dass es nicht gelang, dieses in reiner Form zu isolieren. Aufgrund der folgenden Daten und in Analogie zu den in der Einleitung zitierten Arbeiten handelt es sich dabei jeweils um das entsprechende spirocyclische Thirian 7.

Im ¹H-NMR-Spektrum erscheinen nun die 4 Me-Gruppen an C(2) und C(7) als 4 s, die Benzyl-H-Atome in 7c sind wiederum diastereotop. Das ¹³C-NMR von 7a zeigt neben der charakteristischen Absorption von C(5) bei 160,8 ppm und 5 Me-Signalen zwischen 33,2 und 22,9 ppm 3 s bei 84,9, 78,4 und 46,1 ppm, die vermutlich C(3), C(7) bzw. C(2) zugeordnet werden können.

Beim Stehenlassen der Produkte **7a–c** bei Raumtemperatur trat eine spontane Abspaltung von elementarem S ein unter Bildung der stabilen Endprodukte **8**. Diese S-Abspaltung verlief je nach Substituent an C(5) von 7 unterschiedlich rasch, am schnellsten bei **7b** ($\mathbf{R} = \mathbf{Ph}$) und am langsamsten bei **7a** ($\mathbf{R} = \mathbf{Me}$). Sie konnte durch Zugabe von Trimethyl-phosphit und Erwärmen beschleunigt werden. Nach chromatographischer Aufarbeitung und Destillation wurden die 4,5-Dihydro-5-isopropyliden-1,3-thiazole **8a–c** in Ausbeuten von 63–88% erhalten.

Im IR-Spektrum der Verbindungen 8, die alle korrekte Elementaranalysen für C, H, N und S ergaben, treten charakteristische Banden für die (C==N)- und für die exocyclische (C==C)-Bindung auf. Erstere erscheint bei 8a und 8c bei 1650 bzw. 1643 cm⁻¹, im 2-Phenyl-Derivat 8b bei 1610 cm⁻¹, letztere bei 1635, 1628 bzw. 1608 cm⁻¹. Das ¹H-NMR-Spektrum zeigt für die Isopropyliden-Me-Gruppen jeweils 2s im Bereich von 1,9–1,65 ppm, die Me-Gruppen an C(4) absorbieren als s bei 1,6–1,45 ppm. Im ¹³C-NMR-Spektrum absorbieren die Ring-C-Atome bei 162–158 (C(2)), 140–139 (C(5)) und 80,5–79,5 ppm (C(4)), die C-Atome der Isopropyliden-Gruppe bei ca. 121 (s), 27,5 (q) und 20,7 (q) und die beiden Me-Gruppen an C(4) als q bei ca. 27,0 ppm.

Im Falle der Umsetzung von 2-Diazopropan mit dem Benzyl-Derivat 1c wurde das als Zwischenprodukt formulierte Thiocarbonyl-ylid D' durch 1,3-dipolare Cycloadditionen abgefangen. Dazu wurden die sehr reaktiven Dipolarophile Thiobenzophenon und Fumarodinitril (vgl. [9] [16]) im Überschuss eingesetzt, in der Hoffnung, dass mit ihnen die bimolekulare Cycloaddition rascher eintritt als der monomolekulare Ringschluss zum Thiiran. Wie in den voranstehend beschriebenen Versuchen wurde 1 mmol 1c in 1 ml CDCl₃ bei 2–3° mit 2-Diazopropan versetzt, bis die Lösung vollständig entfärbt war. Nach Zugabe von 2 mmol Thiobenzophenon wurde über Nacht bei Raumtemperatur gerührt. Übliche Aufarbeitung ergab in 67% Ausbeute ein Produkt der Zusammensetzung $C_{28}H_{29}NS_3$ (Elementaranalyse, MS), was derjenigen eines Adduktes 9 bzw. seines Regioisomeren 9' (Schema 4) entspricht. Das 'H-NMR-Spektrum ist sowohl mit der Formel 9 als auch mit 9' in Einklang. Eine Entscheidung zugunsten des Isomeren 9 erlauben das Massen- und das ¹³C-NMR-Spektrum: Aufgrund von Vergleichen mit anderen 4,4-Dimethyl-5,5-diphenyl-1,3-dithiolanen [17] müsste 9' im MS einen intensiven Pik bei m/z 208 für das Fragment Me₂C=CPh₂⁺ aufweisen. Dieser Pik fehlt im MS des Adduktes vollständig. Die Zuordnung der entscheidenden s für C(2), C(4), C(5) und C(9) im ¹³C-NMR-Spektrum wurde aufgrund eines Vergleichs mit den Verbindungen 11 und 12 getroffen (s. Schema 4).

In analoger Weise wurde 1c mit 2-Diazopropan und anschliessend mit einer Lösung von Fumarodinitril in CDCl₃ umgesetzt. Im ¹H-NMR-Spektrum des rohen Gemisches

1828

wurden keine Signale der früher beschriebenen Produkte beobachtet. Nach präp. DC erhielt man in 63% Ausbeute das Addukt **10** (*Schema 4*). Aufgrund der Kopplungskonstanten zwischen H-C(8) und H-C(9) (${}^{3}J = 12,5$ Hz) schreiben wir den beiden CN-Gruppen an C(8) und C(9) die *trans*-Stellung zu. Die Orientierung der CN-Gruppe an C(9) *cis* zu S(1) ist nicht bewiesen; Betrachtungen an *Dreiding*-Modellen zeigen jedoch, dass die Orientierung *cis* zu Me₂C(4) zu erheblichen sterischen Wechselwirkungen führt.

3. Diskussion. – Die beschriebenen Reaktionen von 2-Diazopropan und 1,3-Thiazol-5(4H)-thionen 1 verlaufen wie erwartet *via* 1,3-dipolare Cycloadditionen an die exocyclische (C=S)-Bindung von 1 unter Bildung spirocyclischer 2,5-Dihydro-1,3,4-thiadiazole 6, die bei Raumtemperatur unter N₂-Abspaltung zu Thiocarbonyl-yliden zerfallen. Letztere können sowohl mit Thiobenzophenon als auch mit Fumarodinitril abgefangen werden. Es ist bemerkenswert, dass keine Produkte der sogenannten *Schönberg*-Reaktion (s. *Kap. 1*) vom Typ 2 (*Schema 1*) beobachtet werden. Dieser Befund muss wohl mit der grösseren Stabilität der 2,2-disubstituierten 2,5-Dihydro-1,3,4-thiadiazole 6 (*Schema 3*) im Vergleich mit den an C(2) unsubstituierten vom Typ A (*Schema 1*) erklärt werden. Während sich nämlich bei der Zugabe von 2-Diazopropan zu 1 bei 0° rasch und quantitativ das unter diesen Bedingungen stabile 6 bildet, zerfällt A offenbar schon bei der Herstellung teilweise in das Thiocarbonyl-ylid B, das mit noch vorhandenem 1 eine 1,3-dipolare Cycloaddition zu 2 eingeht. Die grössere Stabilität von 6 ermöglichte im Falle von 6c die kinetische Bestimmung der Halbwertszeit der N₂-Abspaltung bei 17°.

Erstaunlich ist auch, dass auch keine Dimeren der Thiocarbonyl-ylide **D** gebildet werden, wie sie in anderen Fällen [7] [8] [18] und auch bei Umsetzungen von 1 mit Diazomethan und Diazoessigester [5] beobachtet wurden. Diese geringere Dimerisierungsreaktivität der Dipole **D** kann auf die grössere sterische Hinderung durch die beiden Me-Gruppen zurückgeführt werden.

Im Gegensatz zu Reaktionen von Diazomethan und 2-Diazopropan mit 2,2,4,4-Tetramethyl-3-thioxocyclobutanon (13) werden bei Umsetzungen von 1 mit 2-Diazopropan in Pentan bzw. MeOH keine Unterschiede festgestellt. Insbesondere werden keine MeOH-Addukte vom Typ 14 oder 15 beobachtet, wie sie bei Umsetzungen von 13 in

MeOH erhalten wurden [9] [12] (*Schema 5*). Der Ringschluss zum Thiiran 7 verläuft offensichtlich rascher als die Reaktion mit MeOH.

Auch die beim Abfangen von E (R = Me; aus 13 und 2-Diazopropan) mit Thiobenzophenon beobachtete 'Carben-Übertragung' [19] bzw. die mit Ethentetracarbonitril (= Tetracyanoethen; TCNE) beobachtete Cyclopropan-Bildung [9] (*Schema 6*) lassen sich bei den in *Schema 4* skizzierten Abfangexperimenten nicht beobachten. Beide Reaktionen wurden über zwitterionische Zwischenstufen erklärt (s. F-H) [9] [19], die als Zwischenprodukte einer zweistufig verlaufenden 1,3-dipolaren Cycloaddition formuliert wurden (vgl. dazu [9] [11] [20]). Allerdings kann aus dem Fehlen der entsprechenden Produkte bei der Umsetzung von D' mit Thiobenzophenon bzw. Fumarodinitril nicht zwingend geschlossen werden, dass die Cycloadditionen zu 9 bzw. 10 konzertiert verlaufen.

G. M. dankt der Polnischen Akademie der Wissenschaften für die finanzielle Unterstützung im Rahmen des Forschungsprogrammes PR 01.13.1.12 und H. H. dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung und der F. Hoffmann-La Roche AG, Basel, für finanzielle Unterstützung.

Experimenteller Teil

Allgemeines. S. [1]. Schmp.: Büchi SMP-20; in Kapillare; unkorrigiert. IR: Bruker IFS-45; wenn nicht anders angegeben in KBr; Angaben in cm⁻¹. NMR: Bruker WP-80 (¹H, 80 MHz), Bruker WP-80-DS (¹³C, 20,15 MHz); bei ca. 25° in CDCl₃, δ in ppm rel. zu internem TMS (= 0 ppm), J in Hz. MS: Finnigan MAT-90; Elektronenstoss-Ionisation (EI-MS) bei 70 eV; in m/z (rel. %).

1. Ausgangsmaterialien. 1.1. 2-Diazopropan. Aus Aceton-hydrazon [21] durch Oxidation mit gelbem HgO hergestellt [22] und bei -78° aufbewahrt. Bei RT. zersetzte es sich stürmisch unter Entwicklung von N₂. Als Produkt wurde quantitativ Aceton-azin erhalten.

1.2. Thiobenzophenon. Nach Lawesson [23] aus Benzophenon hergestellt und chromatographisch gereinigt (Kieselgel, Pentan mit zunehmender Menge CH_2Cl_2). Das tiefblaue Produkt (Schmp. 54–56°; [23]: 50–52°) wurde bei -78° aufbewahrt. Dabei blieb es während mehrerer Monate unzersetzt.

1.3. Fumarodinitril (= (E)-1,2-Dicyanoethen). Das käufliche (Janssen), schwarze Material wurde vor Gebrauch bei 90°/20 Torr sublimiert. Farblose Kristalle. Schmp. 96–97°.

2. Umsetzung von 2-Diazopropan mit 1,3-Thiazol-5(4H)-thionen 1. 2.1. Allgemeine Vorschrift. Jeweils 0,1 mmol 1 wurden in 2 ml Pentan bzw. MeOH gelöst und im Eiswasser-Bad auf $2-3^{\circ}$ gekühlt. Zu dieser orange-roten Lsg. wurde frisch hergestelltes 2-Diazopropan getropft, bis die orange Farbe vollständig verschwunden war. Jeder Tropfen 2-Diazopropan reagierte sofort mit dem gelösten Thion, so dass die Umsetzung nach 2-3 min beendet war. Das Lsgm. wurde bei *ca*. 20°/20 Torr abgedampft und das zurückgebliebene, farblose Öl sofort in 2 ml kaltem CDCl₃ aufgenommen und bei -78° aufbewahrt. Die Zusammensetzung des Reaktionsgemisches wurde mittels ¹H-NMR analysiert. Die Umsetzungen in Pentan bzw. MeOH zeigten jeweils keine Unterschiede.

Bei der Aufnahme der NMR-Spektren der Thiadiazole 6 bei 24° trat eine intensive N₂-Entwicklung auf. Die Lsg. wurden über Nacht im offenen NMR-Röhrchen bei RT. stehen gelassen und am nächsten Tag erneut vermessen. Dabei wurden neue Produktgemische festgestellt, wobei wiederum keine Unterschiede zwischen den entsprechenden Pentan bzw. MeOH-Lsg. beobachtet wurden. Identische Reaktionsgemische wurden deshalb vereinigt, die Lsgm. abgedampft und die öligen Rückstände bei RT. aufbewahrt. Schon nach kurzer Zeit bildete sich kristallines S. Am schnellsten verlief die spontane Entschwefelung im Falle des Thiirans 7b: schon nach 7 d waren nur noch ¹H-NMR-Signale von 8b vorhanden. Die Thiirane 7a und 7c waren nach 7 d zu *ca.* 20 bzw. 80% in die Olefine 8a bzw. 8c umgewandelt.

Um die Entschwefelung zu beschleunigen, wurde die Lsg. von **7a** oder **7c** in CHCl₃ mit ungefähr äquimolarer Menge Trimethyl-phosphit unter Rückfluss erhitzt. Nach 8 bzw. 2 h war die Entschwefelung vollständig. Die Lsg. wurde i. V. eingedampft und das rohe Olefin **8** i. V. destilliert oder mittels präp. DC (Kieselgel, CH₂Cl₂/Pentan 8:2; jeweils stark fluoreszierende, gut getrennte Zone mit R_f ca. 0,3) gereinigt. Erneute Destillation bzw. Kristallisation (**8b**) führte zu analysenreinen Verbindungen.

2.2. Mit 2,4,4-Trimethyl-1,3-thiazol-5(4H)-thion (1a). 2.2.1. 2,2,7,9,9-Pentamethyl-1,6-dithia-3,4,8-triazaspiro[4.4]nona-3,7-dien (6a). Nicht isolierbar; in CDCl₃ stabil bei 3°, zersetzte sich unter N₂-Abspaltung rasch bei 20°. ¹H-NMR: 2,24 (s, Me-C(7)); 1,85, 1,60 (2s, Me₂C(9)); 1,35 (s, Me₂C(2)).

2.2.2. 2,2,5,7,7-Pentamethyl-1,4-dithia-6-azaspiro[2.4]hept-5-en (**7a**). Nicht in reiner Form isoliert; zersetzte sich langsam unter S-Abspaltung. Sowohl nach Chromatographie als auch nach Destillation Gemisch mit **8a**. **7a**: ¹H-NMR: 2,20 (*s*, Me–C(5)); 2,20, 1,82, 1,74, 1,47 (4*s*, Me₂C(2), Me₂C(7)). ¹³C-NMR: 160,8 (*s*, C(5)); 84,9, 78,4, 46,1 (3*s*, C(2), C(3), C(7)); 33,2, 28,5, 27,0, 25,6, 22,9 (5*q*, 5 Me).

2.2.3. 4,5-Dihydro-5-isopropyliden-2,4,4-trimethyl-1,3-thiazol (8a). Nach Destillation bei 50°/0,2 Torr (Kugelrohr) und präp. DC, 258 mg (63%). Farbloses Öl mit intensivem Geruch, erstarrte bei -20° . IR (Film): 2973s, 2930s, 2862m, 1650m (C=N), 1635s (C=C), 1449m (br.), 1437m (br.), 1375m, 1358m, 1249m, 1209m, 1151s, 896m, 877m, 645m. ¹H-NMR: 2,15 (s, Me-C(2)); 1,86, 1,71 (2s, Me₂C=); 1,47 (s, Me₂C(4)). ¹³C-NMR: 158,4 (s, C(2)); 140,2 (s, C(5)); 120,5 (s, Me₂C=); 79,8 (s, C(4)); 27,7 (q, Me-C(2)); 27,0 (q, Me₂C(4)); 20,7, 20,2 (2q, Me₂C=). MS (25°): 169 (71, M^{+*}), 154 (100, $[M - Me]^+$), 128 (83, $[M - MeCN]^+$), 113 (48), 95 (24), 85 (22), 83 (10, MeCNCMe₂⁺⁺), 79 (17), 59 (19), 42 (15, MeCN⁺⁺). Anal. ber. für C₉H₁₅NS (169,27): C 63,86, H 8,93, N 8,27, S 18,94; gef.: C 63,47, H 8,56, N 7,99, S 18,94.

2.3. Mit 4,4-Dimethyl-2-phenyl-1,3-thiazol-5(4H)-thion (1b). 2.3.1. 2,2,9,9-Tetramethyl-7-phenyl-1,6-dithia-3,4,8-triazaspiro[4.4]nona-3,7-dien (6b). Nicht isolierbar, in CDCl₃ stabil bei 3°, zersetzte sich unter N₂-Abspaltung bei 20° rasch. ¹H-NMR: 7,85–7,65 (m, 2 arom. H); 7,5–7,3 (m, 3 arom. H); 1,87, 1,67 (2s, Me₂C(9)); 1,46 (br. s, Me₂C(2)).

2.3.2. 2,2,7,7-Tetramethyl-5-phenyl-1,4-dithia-6-azaspiro[2.4]hept-5-en (**7b**). Nicht in reiner Form isoliert; bei RT. trat spontane Entschwefelung zu **8b** ein. **7b**: ¹H-NMR: 7,8–7,6 (*m*, 2 arom. H); 7,45–7,25 (*m*, 3 arom. H); 1,90, 1,79, 1,59, 1,46 (4s, Me₂C(2), Me₂C(7)).

2.3.3. 4,5-Dihydro-5-isopropyliden-4,4-dimethyl-2-phenyl-1,3-thiazol (**8b**). Nach präp. DC und Destillation bei 70°/0,001 Torr (Kugelrohr), 408 mg (88%). Farbloses Öl mit intensivem Geruch. Aus Pentan bei -78° feine, farblose Nadeln. Schmp. 21–22°. IR (Film): 2974s, 2931s, 2861m, 1610m (C=N), 1608s (C=C), 1582w, 1490w, 1447s, 1375w, 1358w, 1264s, 1177m, 1089w, 960s, 909w, 765s, 735m, 681s, 621m. ¹H-NMR: 7,8–7,6 (m, 2 arom. H); 7,4–7,2 (m, 3 arom. H); 1,89, 1,79 (2s, Me₂C=); 1,60 (s, Me₂C(4)). ¹³C-NMR: 159,5 (s, C(2)); 139,2 (s, C(5)); 133,5 (s, arom. C); 130,9, 128,4, 127,8 (3d, 5 arom. CH); 121,0 (s, Me₂C=); 80,4 (s, C(4)); 27,3 (q, Me₂C(4)); 27,8, 20,8 (2q, Me₂C=). MS (25°): 231 (38, M^+), 216 (100, $[M - Me]^+$), 145 (5, PhCNCMe₂+⁺), 128 (42, $[M - PhCN]^+$), 113 (21), 104 (14, PhCNH⁺), 103 (10, PhCN⁺⁺), 95 (11), 77 (10), 59 (10). Anal. ber. für C₁₄H₁₇NS (231,34): C 72,74, H 7,35, N 6,05, S 13,86; gef.: C 73,19, H 7,35, N 5,86, S 13,85.

2.4. Mit 2-Benzyl-4,4-dimethyl-1,3-thiazol-5(4H)-thion (1c). 2.4.1. 7-Benzyl-2,2,9,9-tetramethyl-1,6-dithia-3,4,8-triazaspiro[4.4]nona-3,7-dien (6c). Nicht isolierbar; in CDCl₃ bei 3° rel. stabil, zersetzte sich unter N₂-Abspaltung rasch bei RT. ¹H-NMR: 7,25 (br. s, 5 arom. H); 4,05–3,7 (*AB*, $J_{gem} = 16,0$, PhCH₂); 1,84, 1,55 (2s, Me₂C(9)); 1,37 (s, Me₂C(2)).

2.4.2. 5-Benzyl-2,2,7,7-tetramethyl-1,4-dithia-6-azaspiro[2.4]hept-5-en (7c). Nicht in reiner Form isoliert; zersetzte sich langsam unter S-Abspaltung. Nach 7 d Stehen bei RT. wurden nach präp. DC (CH₂Cl₂/Pentan 7:3) 502 mg zähes Öl erhalten. ¹H-NMR: (32:68)-Gemisch 7c/8c. 7c: ¹H-NMR: 7,20 (br. s, 5 arom. H); 3,95–3,6 (*AB*, $J_{gem} = 16,0$, PhCH₂); 1,71, 1,70, 1,51, 1,37 (4s, Me₂C(2), Me₂C(7)).

2.4.3. 2-Benzyl-4,5-dihydro-5-isopropyliden-4,4-dimethyl-1,3-thiazol (8c). Nach präp. DC und Destillation bei 130°/0,001 Torr (Kugelrohr), 427 mg (87%). Farbloses Öl mit intensivem Geruch, das sich bei RT. langsam gelb färbte. IR (Film): 2973m, 2930m, 2862m, 1643w (C=N), 1628s (C=C), 1602w, 1496m, 1454m, 1376w, 1358m, 1247m, 1217m, 1192w, 1177w, 1089m (br.), 876m, 701s, 641m. ¹H-NMR: 7,20 (br. s, 5 arom. H); 3,72 (br. s, PhCH₂); 1,82, 1,64 (2s, Me₂C=); 1,52 (s, Me₂C(4)). ¹³C-NMR 162,1 (s, C(2)); 139,7 (s, C(5)); 136,1 (s, 1 arom. C); 128,9, 128,6, 127,0 (3d, 5 arom. CH); 120,9 (s, Me₂C=); 79,6 (s, C(4)); 41,0 (t, PhCH₂); 27,0 (*q*, $Me_2C(4)$); 27,7, 20,7 (2*q*, $Me_2C=$). MS (25°): 245 (75, M^+), 230 (82, $[M - Me]^+$), 159 (4, PhCH₂CNCMe₂⁺⁺), 128 (100), 117 (12, PhCH₂CN⁺⁺), 113 (31), 95 (18), 91 (25, PhCH₂⁺), 85 (15), 59 (11). Anal. ber. für C₁₅H₁₉NS (245,36): C 73,42, H 7,80, N 5,71, S 13,07; gef.: C 73,87, H 7,76, N 5,69, S 13,10.

2.4.4. Kinetik des Zerfalls von 6c bei $17 \pm 1^{\circ}$. Zu einer Lsg. von 235 mg (1 mmol) 1c in 1,5 ml CDCl₃ wurde bei $2-3^{\circ}$ 2-Diazopropan getropft, bis die Lsg. entfärbt war. Unter intensivem Rühren wurde die Lsg. im thermostatisierten Wasserbad bei $17 \pm 1^{\circ}$ gehalten und gebildetes N₂ volumetrisch bestimmt. Für die Ermittlung der Geschwindigkeitskonstanten k und der Halbwertszeit $\tau_{1/2}$ wurden die Ergebnisse über 3 h herangezogen (s. Tab.). Nach dieser Zeit betrug die Menge des gebildeten N₂ 15 ml, d. h. ca. 60% des stöchiometrischen Volumens (letzteres wurde erst nach ca. 8 h erreicht). Die Auswertung der Funktion $\ln[V_{\infty}/(V_{\infty}-V_t)] = f(t)$ für eine Reaktion 1. Ordnung ergab $k = 1,95 \cdot 10^{-4} \text{ s}^{-1}$ und $\tau_{1/2} = 59$ min.

t [min]	V_t [ml]	$V_{\infty} - V_t$ [ml]	$\ln[V_{\infty}/(V_{\infty}-V_{t})]$	<i>t</i> [min]	V_t [ml]	$V_{\infty} - V_t$ [ml]	$\ln[V_{\infty}/(V_{\infty}-V_{t})]$
5	0,8	14,2	0,055	80	8,8	6,2	0,883
10	1,7	13,3	0,120	90	9,8	5,2	1,059
20	3,1	11,9	0,231	100	10,2	4,8	1,139
30	4,4	10,6	0,347	120	12,9	2,1	1,966
40	5,2	9,8	0,426	130	13,4	1,6	2,338
50	6,0	9,0	0,511	145	14,4	0,6	3,219
60	7,0	8,0	0,629	180	$15,0 = V_{\infty}$		
70	7,8	7,2	0,734			~	

Tabelle. N2-Volumina bei der Zersetzung von 6c

3. Abfangexperimente für das Thiocarbonyl-ylid D aus der Umsetzung mit 1c. 3.1. Mit Thiobenzophenon. Eine Lsg. von 235 mg (1 mmol) 1c in 1 ml CDCl₁ wurde bei 2-3° mit 2-Diazopropan versetzt, bis die Lsg. vollständig entfärbt war. Unter Rühren wurde dann eine Lsg. von 396 mg (2 mmol) Thiobenzophenon in 0,5 ml CDCl₃ zugegeben, über Nacht bei RT. weitergerührt und dann mittels präp. DC (Kieselgel, CH₂Cl₂/Pentan 1:1) aufgearbeitet. Die polarste der drei Hauptzonen (R_f ca. 0,3) gab 320 mg (67%) zähes Öl, dessen NMR, MS und Elementaranalyse einem Cycloaddukt 9 entsprach. Die zweite Fraktion ($R_f ca. 0.5$) lieferte 85 mg 1c als gelbes Öl (¹H-NMR), die unpolarste Fraktion (70 mg, R_f ca. 0,6) bestand aus mindestens 3 weiteren Komponenten. Das ölige Hauptprodukt (320 mg) wurde 10 d bei RT. stehen gelassen, mit wenig MeOH digeriert und einige h bei -20° stehen gelassen. Die gebildeten Kristalle wurden abgenutscht: 177 mg (37%) 7-Benzyl-2,2,9,9-tetramethyl-4,4-diphenyl-1,3,6-trithia-8-azaspiro[4.4]non-7-en (9). Farblose Plättchen, Schmp. 114-117°. Erneutes Umlösen aus Hexan mit wenig CH₂Cl₂ lieferte analysenreine Substanz vom Schmp. 115-117°. IR: 1633s (C=N), 1601m, 1494s, 1453s, 1442s, 1382m, 1378m, 1217m, 1156s, 756s, 749s, 697s. 1H-NMR: 7,8-7,5 (m, 4 arom. H); 7,3-6,95 (m, 11 arom. H); 3,55, 3,34 (AB, J_{gem} = 16,0, PhCH₂); 1,69 (br. s, Me₂C); 1,36 (br. s, Me₂C). ¹³C-NMR: 166,5 (s, C(7)); 147,3, 143,4, 135,2 (3s, 3 arom. C); 130,9, 130,4, 129,0, 128,6, 127,5, 127,1, 126,4 (7d, 15 arom. CH); 97,4, 83,0, 77,2, 54,7 (4s, C(2), C(4), C(5), C(9)); 41,3 (t, PhCH₂); 33,8, 33,0, 29,4, 24,8 (4q, 4 Me). MS (220°): 475 (2, M⁺⁺), 401 (34, $[M - Me_2C=S]^+$, 369 (4, $[M - Me_2CS_2]^+$), 354 (6), 284 (10), 240 (16, $Ph_2CSCMe_2^{++}$), 210 (56), 178 (6), 165 (24), 159 (100, PhCH₂CNCMe₂⁺), 100 (10), 91 (20), 74 (5, Me₂CS⁺), 59 (8). Anal. ber. für $C_{28}H_{29}NS_3$ (475,70): C 70,69, H 6,14, N 2,94, S 20,22; gef.: C 70,57, H 6,19, N 3,00, S 20,15.

3.2. *Mit Fumarodinitril.* Zu einer Lsg. von 180 mg (0,76 mmol) 1e in 1 ml CHCl₃ wurde unter Rühren bei 2–3° tropfenweise 2-Diazopropan gegeben, bis die Lsg. vollständig entfärbt war. Die kalte Lsg. wurde mit einer Lsg. von 6 mg (1 mmol) Fumarodinitril in 0,5 ml CDCl₃ versetzt, weiter gerührt und bei RT. über Nacht stehen gelassen. ¹H-NMR: keine Signale von 4e oder 5c; nur Signale von 10. Das Rohprodukt wurde nach präp. DC (Kieselgel, CH₂Cl₂/Aceton 98:2) als farbloses, zähes Öl isoliert, das nach Zugabe von Pentan kristallisierte. Umkristallisation aus EtOH ergab 170 mg (63%) analysenreines 2-Benzyl-4,4,7,7-tetramethyl-1,6-dithia-3-azaspiro[4.4]oct-2-en-8,9-dicarbonitrile (10). Farblose Kristalle. Schmp. 135–136°. IR: 2974m, 2964m, 2245w (CN), 1633s (C=N), 1499m, 1454s, 1420m, 1381m, 1376m, 1219m, 1167m, 1065m, 892m, 768m, 712s. ¹H-NMR: 7,22 (br. s, 5 arom. H); 3,86, 3,70 (*AB*, J_{gem} = 15,0, PhCH₂); 3,67, 3,35 (*AB*, J_{gem} = 12,5, H–C(8), H–C(9)); 1,60, 1,54, 1,51, 1,29 (4s, 4 Me). ¹³C-NMR: 168,0 (s, C(2)); 134,7 (s, 1 arom. C); 129,3, 128,7, 127,5 (3d, 5 arom. CH); 114,6 (s, 2 CN); 82,9, 79,4, 50,4 (3s, C(4), C(5), C(7)); 47,6, 45,6 (CH(8), CH(9)); 41,1 (t, PhCH₂); 30,6, 29,5, 24,8, 21,6 (4q, 4 Me). MS (170°): 355 (6, M⁺⁺), 159 (100, PhCH₂CNCMe₂⁺⁻), 144 (8), 118 (5, PhCH₂CNH⁺), 117 (4, PhCH₂CN⁺⁻), 91 (12), 74 (2). Anal. ber. für C₁₉H₂₁N₃S₂ (355,50): C 64,19, H 5,95, N 11,82, S 18,02; gef.: C 64,42, H 5,84, N 11,90, S 18,43.

LITERATURVERZEICHNIS

- [1] G. Mlostoń, A. Linden, H. Heimgartner, Helv. Chim. Acta 1991, 74, 1386.
- [2] H. Heimgartner, Croat. Chem. Acta 1986, 59, 237.
- [3] H. Heimgartner, Phosphorus, Sulfur, Silicon 1991, 58, 281.
- [4] S. Pekcan, H. Heimgartner, Helv. Chim. Acta 1988, 71, 1673.
- [5] M. Kägi, Diplomarbeit, Universität Zürich, 1992.
- [6] G. Mlostoń, R. Huisgen, Heterocycles 1985, 23, 2201.
- [7] I. Kalwinsch, X. Li, J. Gottstein, R. Huisgen, J. Am. Chem. Soc. 1981, 103, 7032.
- [8] R. Huisgen, C. Fulka, I. Kalwinsch, X. Li, G. Mlostoń, J. Moran, A. Pröbstl, Bull. Soc. Chim. Belg. 1984, 93, 511.
- [9] a) R. Huisgen, E. Langhals, G. Mlostoń, T. Oshima, J. Rapp, Lectures Heterocycl. Chem. 1987, 9, S-1;
 b) R. Huisgen, in 'Advances in Cycloaddition', Ed. D. P. Curran, Jai Press Inc., London, 1988, Vol.1, S.1.
- [10] R. Huisgen, G. Mlostoń, C. Fulka, Heterocycles 1985, 23, 2207.
- [11] R. Huisgen, J. Penelle, G. Mlostoń, A. Buyle-Padias, H.K. Hall, Jr., J. Am. Chem. Soc. 1992, 114, 266.
- [12] G. Mlostoń, Habilitationsschrift, Universität Łódź, 1991.
- [13] R. Huisgen, G. Mlostoń, Heterocycles 1990, 30, 737.
- [14] E. Schaumann, H. Behr, J. Lindstaedt, Chem. Ber. 1983, 116, 66.
- [15] K. Hartke, A. Kumar, J. Köster, G. Henssen, T. Kissel, T. Kämpchen, Chem. Ber. 1982, 115, 3096.
- [16] a) R. Huisgen, X. Li, Tetrahedron Lett. 1983, 24, 4185; b) R. Huisgen, E. Langhals, ibid. 1989, 39, 5369.
- [17] G. Mlostoń, R. Huisgen, unveröffentlicht.
- [18] X. Li, R. Huisgen, Tetrahedron Lett. 1983, 24, 4181.
- [19] G. Mlostoń, R. Huisgen, 'Annual Meeting of the Polish Chemical Society', Łódź, 1988, Abstracts A, S. 110.
- [20] R. Huisgen, G. Mlostoń, E. Langhals, J. Am. Chem. Soc. 1986, 108, 6401; J. Org. Chem. 1986, 51, 4085.
- [21] Th. Curtius, L. Pflug, J. Prakt. Chem. 1891, 44, 535.
- [22] S.O. Andrews, A.C. Day, P. Raymond, H.C. Whiting, Org. Synth. 1970, 50, 27.
- [23] B. S. Pedersen, S. Scheibye, N. H. Nilsson, S.-O. Lawesson, Bull. Soc. Chim. Belg. 1978, 87, 223.